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Abstract

Text-to-image (T2I) generation has seen significant
progress with diffusion models, enabling generation of
photo-realistic images from text prompts. Despite this
progress, existing methods still face challenges in follow-
ing complex text prompts, especially those requiring com-
positional and multi-step reasoning. Given such complex
instructions, SOTA models often make mistakes in faithfully
modeling object attributes, and relationships among them.

In this work, we present an alternate paradigm for T2I
synthesis, decomposing the task of complex multi-step gen-
eration into three steps, (a) Generate: we first generate an
image using existing diffusion models (b) Plan: we make
use of Multi-Modal LLMs (MLLMs) to identify the mistakes
in the generated image expressed in terms of individual ob-
jects and their properties, and produce a sequence of cor-
rective steps required in the form of an edit-plan. (c) Edit:
we make use of an existing text-guided image editing models
to sequentially execute our edit-plan over the generated im-
age to get the desired image which is faithful to the original
instruction. Our approach derives its strength from the fact
that it is modular in nature, is training free, and can be ap-
plied over any combination of image generation and editing
models. As an added contribution, we also develop a model
capable of compositional editing, which further helps im-
prove the overall accuracy of our proposed approach. Our
method flexibly trades inference time compute with perfor-
mance on compositional text prompts. We perform exten-
sive experimental evaluation across 3 benchmarks and 10
T2I models including DALLE-3 and the latest – SD-3.5-
Large. Our approach not only improves the performance of
the SOTA models, by upto 3 points, it also reduces the per-
formance gap between weaker and stronger models. The
code is available at https://dair-iitd.github.io/GraPE/

1. Introduction
Diffusion models [45], have revolutionized the space
of generating photo-realistic images with multiple works

Figure 1. Illustration of GraPE’s capability to align the image with
the input prompt. Left: Generations from various state-of-the-art
diffusion models [5, 41, 46], along with their inaccuracies. Right:
Images produced by GraPE, in a completely training free manner.

showing their superior performance compared to their older
competitors such as GANs, VAEs and Flow-based mod-
els [14, 34, 43]. Of specific interest has been their ability to
generate images from text. Despite the success, it has been
observed that SOTA diffusion models still struggle to gen-
erate accurate images for instructions which involve multi-
step compositional reasoning, often resulting in errors over
object attributes as well as their interactions with other ob-

ar
X

iv
:2

41
2.

06
08

9v
1 

 [
cs

.C
V

] 
 8

 D
ec

 2
02

4

https://dair-iitd.github.io/GraPE/


jects in the image [9, 26, 40]. Figure 1 shows an example
of a text-prompt and the corresponding images generated
by 3 of the SOTA text-to-image generation models. Sev-
eral reasons have been pointed for the relative performance
on such complex instructions, including lack of appropriate
training data, and use of weak text-encoders to name a few.
This has naturally limited their applicability for the task of
automated and reliable image generation in real life scenar-
ios. To make matters worse, image-editing has been left
even further behind, with existing models hardly capable of
correctly handing complex edit tasks.

To overcome these challenges, recent work has seen
several credible attempts to address the challenge of gen-
erating images faithful to complex instructions. Broadly,
these can be divided in two categories (1) those requir-
ing fine-tuning of existing generation models, examples in-
clude [8, 24, 27, 51, 54] (2) and those which are based
only on adapting the inference procedure, examples include
[1, 9, 16, 31]. While these approaches have been able to
show some improvements over the base diffusion models,
the problem remains far from solved. We survey the exist-
ing related works in detail in Section 2.

In this work, we present a novel approach which is based
on the following observations: Instead of performing the
image synthesis for a complex compositional instruction in
one go, we can redefine the task into iterative refinement of
a partially faithful generated image. Our approach can be
described as a pipeline of the following 3 steps: (a) Gener-
ate: Initial generation using existing T2I models (b) Plan:
Identification of errors in the form of a series of simple edits
(largely over individual objects and their relations) required
to fix the original generation; the edits are expressed in the
form of a sequential editing plan generated via the use of
a MLLM (c) Edit carrying out the edit plan in a sequen-
tial manner over the original generation to get the desired
image. We refer to our approach as GeneRAte-Plan-Edit
(GraPE). To the best of our knowledge, we are the first ones
to decompose the task of fine-grained generation as a series
of simpler (atomic) edits which are preceded by a partially
correct generation.

We perform a series of experiments to evaluate the ef-
ficacy of our approach over three benchmark datasets. We
compare with 10 different T2I models, and show improve-
ment in each case, with improvements up-to a significant
20+ points in some cases. We also note that we see a more
significant improvement in weaker (typically smaller) gen-
eration models, resulting in narrowing of performance gap
between smaller and larger SoTA models. We also perform
ablations showing the value of our object-centric approach
for generating edit plans. Along with this, significant boost
in performance is shown when we use the compositional
image editor that we develop, as part of our pipeline. We
also present detailed error analysis and point to limitations

of our model in our experimental analysis.
The contributions of our paper can be summarized as fol-

lows: (a) We propose a simple yet effective approach for im-
proving the performance of T2I models via a generate-plan-
edit pipeline. (b) Our approach is guided by object-centric
edit plans, and exploits the power of editing models which
can handle compositions well. (c) Our approach is modular,
and can be used with any existing base generation or editing
model (d) We perform a series of experiments demonstrat-
ing the efficacy of our approach over a large number of T2I
models, and also present detailed insights into the working
of model.

2. Related Work
Compositional Image Generation: T2I models struggle
with compositional image generation, such as generating
objects with correct attributes, adhering to object relations,
etc. [4, 17, 21]. Several works aim to improve the com-
positional image generation capabilities of T2I diffusion
models. Some prior works intervene on the cross-attention
maps in diffusion models which are responsible for incor-
porating information form the text into the image. [1, 9]
strengthen the attention activations of neglected concepts
in the image during the generative process using inference
time losses, primarily targeting the reduction of catastrophic
neglect and incorrect attribute binding. [27, 51] proposes
training models focused on alignment of Cross-attention
maps for each token with pseudo-ground truth segmenta-
tion maps. [16] uses linguistic structures and structured
representations of text such as constituency tree, for manip-
ulating cross-attention representations. However, all these
works often focus on narrow compositional concepts, such
as only attribute binding or reducing catastrophic neglect
of objects, than being a general purpose method for align-
ing images with text. [50] uses MLLMs as an agent with
an extensive set of tools for decomposing and planning the
generation process into multiple steps. [57] uses an LLM
for planning the generation process and suggesting sub-
regions for region-wise diffusion, however, it may struggle
with either with decomposing into or merging of these re-
gions, since their re-weighting and sampling method is dif-
ferent from what diffusion generative models are trained for.
[12, 18, 31, 35] utilize LLMs for generating intermediate
representations such as layouts, panels or blobs followed by
generating using specialized models that require such com-
plex annotations to be trained. [11, 19, 32, 56, 64] utilize
LLMs such as Gemma, LLaMA , T5-XXL [39, 47, 49]
as text-encoders for improved text representations com-
pared to contrastively trained models like CLIP [38] that
are largely agnostic to word order [28, 59]. Orthogonally,
we use MLLMs for planning the sequential editing process
based on the initial generated image, and use general pur-
pose generator and editor models in their native fashion.



Instruction Guided Image Editing: Editing images with
human written instructions have seen significant interest
in the community [6, 15, 29, 44, 60–62]. Among recent
work, InstructPix2Pix [6] leverages a training free editing
model, Prompt-to-Prompt [22] along with GPT3 [7] to pro-
duce paired image data with editing instructions. Mag-
icBrush [60] is a manually annotated real world image edit-
ing dataset that improves InstructPix2Pix. [29] release Au-
rora, for action and reasoning centric image editing. In our
work we explore the use of general-purpose image editors
for aligning images generated via T2I models to their com-
plex text prompts. We also develop a compositional image
editor leading to further improved performance.

3. Method
In this section, we outline our Generate-Plan-Edit (GraPE)
framework. Let us introduce some notation. Let T be a
textual instruction. In the task of T2I synthesis, given an
instruction T , our goal is to be able to generate an image
Io which satisfies various requirements expressed via the
instruction T . While most existing techniques take the ap-
proach of directly generating Io via T , they often result in
various kinds of inaccuracies, due to the complexity of the
instruction. We are motivated by the observation that the
task of T2I synthesis can be broken down into simpler steps
of first generation, followed by identification of errors, and
a sequence of corrective edits, each of which is simple and
object specific in nature. Accordingly, we propose the fol-
lowing generation pipeline.

We first generate an initial image Ig using a SOTA gener-
ative model, G. This Ig may have mistakes, or inaccuracies
with respect to the intent expressed in T . We then make
use of an existing MLLM (P) to identify the mistakes in
Ig , as a difference between image and textual descriptions
in T and Ig , respectively, for each object of interest, and
corrective steps suggested, in the form of an edit plan ex-
pressed as (Te1 , Te2 , · · · , Ten), where each Tek is an edit
instruction fixing some aspect of the Ig so that it can be
aligned with the original prompt T . Note that the number
of edits is instance specific, and is a part of the output pro-
duced by P . Finally, we make use of an editing model E
which inputs the current image Iek along with an edit in-
struction, Tek+1

and produces next image in the sequence
Iek+1

= E(Iek , Tek+1
) with k ∈ {1, 2, · · ·n − 1}. Note

that Ig = Ie0 and Ien = Io. This algorithm comprises of
3 broad steps: (a) Generate: Generate the image for textual
instruction T (b) Plan: Identify mistakes and propose a cor-
rection plan (c) Edit: Perform the sequence of edits based
on the corrective plan. We now describe each step in detail.

3.1. Image Generation
For our framework’s initial step, we create a base image
Ig , which serves as a foundational input for the subsequent

processes involved in planning and editing. This image Ig
and it’s corresponding text-prompt T are considered as pri-
mary inputs for the next steps, which allows our framework
to operate in a plug-and-play manner, regardless of the T2I
model used in generation.

3.2. Multi-Modal Planner
The planner is a key component of GraPE, with its role
being executed by a Multi-Modal Large Language Model
(MLLM) that assesses the initial image, Ig , for potential
object misalignment relative to the textual description pro-
vided in the prompt , T . This discrepancy analysis acts sim-
ilarly to the Chain-of-Thought prompting technique [52],
designed to enhance reasoning by encouraging the plan-
ner to break down the assessment process into object level
steps.

Prompting Style: The prompting style used with the
MLLM play a crucial role in its ability to generate clear
and concise plans across images from diverse domains. Un-
like existing approaches [31, 57], which typically rely on
LLMs to create abstract or structured representations–such
as bounding boxes, layouts or blobs–either in a few-shot
manner or through explicit training on annotated data [63],
our approach takes a streamlined alternative that bypasses
the complexity of these strategies.

Our method focuses on leveraging the inherent strengths
of MLLMs, focusing on tasks where they already excel,
such as image captioning and language comprehension,
which reduces the need for intricate representations en-
abling our framework to maintain simplicity and general-
ization across domains. By combining these strengths with
carefully designed few-shot examples, we guide the planner
to produce object-centric, structured outputs without neces-
sitating additional, specialized training.

The planner’s output is organized into four key steps, ex-
plained below using the example in Fig 2.
• Analyzing Textual Elements: The goal here is to extract

high level object-attribute pairs from the text-prompt, T
focusing on relationships among the described objects.
As shown in Fig. 2, the key exacted entities are Tiny Dog,
White Car and plate of sushi.

• Analyzing Image Elements: Next, the planner generates
a detailed object-level analysis of Ig , which is akin to cre-
ating a comprehensive image caption limited to object-
level information. As seen in our example, MLLM effec-
tively finds the objects present in the image in context of
the text-prompt, T i.e Tiny Dog and White Car and non-
existence of sushi, scattered oranges.

• Error Identification: The extracted entities from both
modalities extracted in the prior steps are compared and a
descriptive summary of the identified errors is generated,
this step not only grounds the mistakes but also provides



Multimodal
LLM

Editing Plans
Few Shot
Examples

A tiny dog sitting
next to a white

car. Nearby, there is
a plate of sushi and

a few oranges
scattered around

Text-to-Image
Diffusion Model

Image-Editing
Diffusion Model

Textual Elements:   
           Tiny Dog | White Car | Plate of sushi 
Image Elements: 
           Tiny Dog | White Car | No sushi | No scattered oranges 
Mistake Identification: 
           The plate contains orange slices instead of sushi.

   There are no scattered oranges around in the scene.
Feedback:
  1. Replace the orange slices on the plate with sushi.
  2. Add oranges scattered around the dog.

 
 You are a multi-modal language model with advanced 
 capabilities in both image analysis. and natural language 
 understanding. Your task is to analyse images and 
 identify any mistakes when compared to a given textual 
 prompt. Follow these steps:

 1. Textual Prompt Analysis  ...
 2. Image Analysis ...
 3. Comparison ...
 4. Mistake Identification ...
 5. Feedback ...

golden apple, next to
bronze orange next

to silver grapes

Feedback:
1. Change orange's color to bronze
2. Change grapes to silver

GraPE 
Pipeline

Few Shot 
Examples

MLLM Planner 
Output

Figure 2. Proposed GraPE framework, a given text prompt is used to generate an initial image from T2I model, Ig which is then fed into
a MLLM based planner along with the text prompt which identifies the objects that are misaligned in the image and outputs a set of edit
plans guided by few-shot prompting. The plans are executed as a series of edits over the initial image to produce the final image

an interpretable way into planner’s reasoning.
• Feedback Generation: Finally, leveraging its extensive

knowledge, the MLLM generates actionable feedback in
the form of editing instructions to re-align image elements
with the textual description. This step ensures that out-
put aligns with the prompt’s intent. As in Figure 2, the
MLLM plans to first replaces the objects (orange slices)
on the plate with sushi and adds oranges around the dog
in two distinct steps.
This structured approach not only enhances the inter-

pretability and accuracy of the planner’s outputs but also
provides a user-friendly, transparent process for refining
image alignments in GraPE. The plans are extracted from
MLLM output using regex matching of Feedback header.

3.3. Text Guided Image Editing
In our framework, the editing model plays a crucial yet
straightforward role: it iteratively refines the generated im-
age (Ig) based on the plans extracted from the structured
output produced by the MLLM in the planning phase. This
design ensures flexibility, allowing for the use of any pre-
trained model as a plug-and-play component.

Compositional Image Editing T2I models based on
CLIP [38], and by extension, editing models built on it are
limited by CLIP’s compositional reasoning capabilities in-
cluding understanding word order in text and object rela-
tions in images [28, 48, 59]. We hypothesize and show for
the first time that enhancing word order understanding in

the text space and training the model on high-quality object-
centric and reasoning-oriented data is key to induce compo-
sitionality in image editors. For this, we introduce PixEdit,
a text-guided image editing model based on PixArt-Sigma
[11] and trained on the reasoning-centric dataset used by
AURORA [29]. With the T5-XXL [39] language model
as its text encoder, PixEdit demonstrates enhanced per-
formance on compositional and spatially complex edits,
benefiting from both robust language comprehension and
reasoning-centric training data. Providing gains over all ex-
isting image-editing models for the generation task in our
GraPE framework. Note that PixEdit is developed to be
a general-purpose image editor, with enhanced composi-
tional and object centric editing capabilities, and is not spe-
cific to the generation task we tackle. For additional details
about PixEdit refer Supplementary Section 9.

3.4. Implementation Details

We utilize a frontier multi-modal model, GPT-4o as a multi-
modal planner for its exceptional image-understanding and
instruction following capabilities, both of which are essen-
tial for generating high-quality plans. While GraPE works
with any strong image editing model, for best results we
use our developed PixEdit and the recently proposed AU-
RORA model [29] as our editors due to their ability to per-
form object-centric and reasoning-oriented edits on real im-
ages, supported by training on an editing dataset derived
from videos and simulators. See Supplementary Section 9
for more details on implementation.



Text Prompt Generated Image Edit Step 1 Edit Step 2 Edit Step 3

A porcelain pot with
tulips and a metal can
with orchids and a
glass jar with
sunflowers

Remove sunflowers
from image.

Add a glass jar on
table.

Put sunflowers in the
glass jar.

Three chairs are
arranged in a row. A
gray duck is positioned
on the right side of the
rightmost chair. A
skyline in background.

Remove the duck from
the leftmost chair.

Remove the duck from
the middle chair.

Position a gray duck
on the right side of the
rightmost chair.

A green bench, a red
car, a blue bowl, and a
pink apple.

Change the blue apple
to a blue bowl.

Change the red apple
to a pink apple.

Table 1. Iterative results by applying GraPE. on images generated by SD3.5 and SDXL, these images are edited via the proposed PixEdit
editing model. Please see 8 for additional details on the plans generated for these images.

SD1.5

StructDiff
SD2.1 LMD

SDXL
PixArt

DeepFloydIF
PGv2.5

Dalle3

SD3.5 Large
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T2
IC

om
pB

en
ch

 G
PT

Q
A

 S
co

re

SD1.5

StructDiff
SD2.1 LMD

SDXL
PixArt

DeepFloydIF
PGv2.5

Dalle3

SD3.5 Large

Fl
ic

kr
B

en
ch

 G
PT

Q
A

 S
co

re

Base: DSG (w/o dep)
Base: DSG

GraPEAURORA: DSG (w/o dep)
GraPEAURORA: DSG 

GraPEPIXEDIT: DSG(w/o dep)
GraPEPIXEDIT: DSG

Figure 3. Experimental results showcasing the maximum gain in DSG score by GraPE with both AURORA and PixEdit as editing models.
The figure presents both DSG and DSG (w/o dependency) scores. The percentage gain is measured over DSG scores.

4. Experiments

4.1. Experimental Settings

Models: To evaluate the effectiveness of GraPE, we con-
duct a comprehensive assessment across 10 state-of-the-art

text-to-image (T2I) models of varying sizes and capabil-
ities. These models include: Stable Diffusion v1.5 [42],
Structure Diffusion [16], Stable Diffusion V2.1 [42], LMD
[31], SD-XL [37], PixArt-α [10], DeepFloyd IF [2], Play-
groundV2.5 [30], Dalle 3 [5], and the latest Stable Diffu-



Method
Concept K=1 Concept K=3 Concept K=5 Concept K=7

Base +GraPEPixEdit Base +GraPEPixEdit Base +GraPEPixEdit Base +GraPEPixEdit

Stable-Diffusion v1.5 [42] 0.808 ±0.009 0.892 ±0.002 0.606 ±0.018 0.752 ±0.002 0.497 ±0.010 0.689 ±0.002 0.450 ±0.005 0.610 ±0.005

Structure Diffusion [16] 0.823 ±0.002 0.885 ±0.004 0.606 ±0.002 0.723 ±0.005 0.542 ±0.014 0.703 ±0.006 0.447 ±0.001 0.571 ±0.002

Stable Diffusion v2.1 [42] 0.833 ±0.002 0.868 ±0.005 0.639 ±0.014 0.737 ±0.002 0.579 ±0.012 0.687 ±0.005 0.466 ±0.002 0.626 ±0.002

LMD [31] 0.855 ±0.004 0.873 ±0.002 0.711 ±0.008 0.773 ±0.006 0.643 ±0.011 0.725 ±0.009 0.591 ±0.002 0.668 ±0.009

SD-XL [37] 0.848 ±0.010 0.877 ±0.005 0.708 ±0.018 0.780 ±0.007 0.635 ±0.014 0.729 ±0.004 0.520 ±0.003 0.628 ±0.002

PixArt-α [10] 0.813 ±0.010 0.872 ±0.010 0.668 ±0.011 0.722 ±0.002 0.649 ±0.011 0.742 ±0.002 0.507 ±0.001 0.625 ±0.002

DeepFloyd IF [2] 0.883 ±0.009 0.915 ±0.000 0.680 ±0.016 0.765 ±0.007 0.663 ±0.014 0.745 ±0.002 0.583 ±0.002 0.662 ±0.006

PlaygroundV2.5 [30] 0.908 ±0.010 0.955 ±0.004 0.737 ±0.023 0.792 ±0.009 0.658 ±0.015 0.721 ±0.002 0.540 ±0.003 0.640 ±0.005

Dalle3 [5] 0.947 ±0.002 0.953 ±0.002 0.832 ±0.012 0.861 ±0.003 0.812 ±0.014 0.832 ±0.004 0.728 ±0.006 0.737 ±0.004

Stable Diffusion v3.5 Large [46] 0.927 ±0.005 0.948 ±0.002 0.815 ±0.002 0.817 ±0.002 0.803 ±0.003 0.831 ±0.004 0.759 ±0.004 0.784 ±0.005

Table 2. Results on Concept-mix benchmark GraPEPixEdit

sion v3.5 Large [46]. This selection encompasses a diverse
range of recent T2I models, allowing for a thorough eval-
uation of GraPE’s robustness across different architectures
and configurations.

Benchmarks:
1. T2I Compbench [26]: We evaluate the composi-

tional generation capabilities of GraPE using this well-
established benchmark, specifically designed to assess
performance in this area. This includes compositional
challenges across categories such as shape, color, tex-
ture, spatial, non-spatial, and complex. We utilize a sub-
set of 100 prompts, sampled uniformly across all six cat-
egories—shape, color, texture, spatial, non-spatial, and
complex—to ensure a comprehensive assessment of the
model’s performance across diverse compositional chal-
lenges.

2. ConceptMix [55] : This benchmark evaluates models
across varying levels of controllable compositionality.
Using the official ConceptMix codebase, we generate
100 prompts for each K ∈ 1, 3, 5, 7. Each prompt in-
cludes at least one object paired with K additional vi-
sual concepts—such as color, number, shape, size, style,
spatial arrangement, and texture—offering a diverse and
rigorous assessment of the model’s ability to handle in-
creasingly complex visual compositions.

3. Flickr-Bench : Flickr-30k [36] is a widely used bench-
mark for evaluating the generation quality of T2I models
using metrics such as FID [23]. The human-generated
prompts in this dataset offer a well-balanced mix of com-
positionality and realism, making it suitable for assess-
ing our method’s performance on general-purpose tasks
beyond compositionality. To this end, we sample 100
prompts from the dataset’s test split for evaluation.

Evaluation Metrics: Many of the SOTA automated eval-
uation metrics belong to the QA pair generation and Vi-
sual Question-Answering(VQA) framework. Prior works

[13, 21, 25, 53, 58] have demonstrated it’s effectiveness and
correlation with human-predictions when judging semantic
accuracies. The ability to generate object/attribute centric
’yes’/’no’ questions over a compositional text prompt al-
lows for fine-grained assessment of image elements using
MLLMs. We therefore follow [13] to generate grounded
binary questions for T2I-Compbench and Flickr-Bench and
utilize ConceptMix’s existing set of questions that are gen-
erated simultaneously with the prompts and utilize GPT-4o
as the choice VQA model following [55].

4.2. Results

GraPE Improves Compositional T2I Synthesis GraPE
can be used with any given back-bone in a plug-n-play
manner, and substantially improves performance across the
board for all of the 10 T2I models tested in this study,
including SoTA models like SD3.5 [46]. Results on T2I
Compbench and Flickr-Bench are present in Figure 3. Re-
sults on ConceptMix are present in Table 2. On T2I Comp-
bench we see improvements ranging from 17.6% in the case
of SD1.5 to nearly 2% for the latest SD3.5 Large model.
On ConceptMix as well, we see large performance gains
across prompt complexities K={1, 3, 5, 7}. For prompts
with higher complexity (K=7), we see gains ranging from
3.1% to 35.5% across models.
GraPE is more effective with complex T2I prompts.
As seen in Table 2, the absolute performance difference be-
tween generation from base model vs our method increases
as we go towards more complex prompts (from K=1 to
K=7). For e.g., for SD XL, the gains compared to the base
model increase from 2.9% for K=1 to 10.8% for K=7, and
this observation remains constant across T2I models.
GraPE exceeds performance on general T2I tasks
Gains achieved by GraPE are not limited to compositional
or complex prompts as is the case in T2I Compbench and
ConceptMix datasets, rather it also generalizes to more
widely used general T2I benchmarks such as Flickr-Bench.
Fig. 3 shows that GraPE leads to large performance gains



ranging from 2 to 23% across different models.
GraPE reduces the gap between models of varied T2I
capabilities GraPE leads to a larger absolute performance
increase for relatively less capable base diffusion models.
This closes the gap between performance of such models
with more capable ones. For e.g., for ConceptMix dataset
(K=3), the difference between SD-1.5 and SD-3.5 reduces
from 20.9% to 6.5% when comparing the base generations
vs generations from GraPE respectively.
GraPE scales well with more compute Our approach
can be viewed from a lens of using extra inference time
compute (calls to the editing model) for creating images
better aligned with complex prompts, achieving better per-
formance on the T2I Synthesis task. GraPE flexibly trades
off performance with the amount of compute (or the num-
ber of edits at inference time). See Fig. 4 for results on four
representative models. This also shows that each planning
step of GraPE is important on average for improving on the
T2I synthesis task gradually.

For additional results, including comparisons with other
recent approaches, see Supplementary Section 8.

4.3. Ablations
Naive Planner This section highlights the importance of
object and attribute centric decomposition of plans to gen-
erate effective editing instructions. We modify the few-shot
structure of the MLLM planner to skip the decomposition
into image and text elements and prompt it to identify errors
and suggest editing plans given the text-prompt and gener-
ated image. We refer to the pipeline thus constructed as
GraPEnaive. Table 3 presents the results of both GraPE and
GraPEnaive on K=7 subset of ConceptMix benchmark for
a subset of models. See Supplementary Section 7 for more
ablations.

Method Concept K=7
GraPEnaive GraPE

Stable Diffusion v2.1 [42] 0.618 0.626
LMD [31] 0.622 0.668
SD-XL [37] 0.598 0.628
PlaygroundV2.5 [30] 0.622 0.640
Stable Diffusion v3.5 Large [46] 0.724 0.784

Table 3. Results on Concept-mix benchmark (K=7 subset). Com-
paring both GraPEnaive and GraPE (Using PixEdit)

4.4. Analysis and Insights
We conduct a detailed examination of each component in
GraPE, focusing specifically on identifying and analyzing
failure cases in both the MLLM planner and the editing
model. For this purpose, we curate a dataset of 120 image-
prompt pairs, uniformly sampled across all 10 models and
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across the models.

6 benchmarks. This dataset is carefully evaluated by six
human annotators, compensated well above the national av-
erage hourly wage.

Q1 Q2 Q3

Type Yes No No Partial Full Yes No

GPT-4o 25.4 74.5 8.7 35.7 55.5 89.4 10.5
Qwen-VL-72B 25.4 74.5 26.9 30.0 43.0 85.9 14.0

Table 4. Results from human study on MLLM planners. We
present results with GPT-4o based planner used in GraPE and an
open-source alternative Qwen-VL-72B [3]

MLLM planner Accuracy For each image-prompt pair,
along with the plan generated by GraPE, evaluators were
asked to answer three multiple-choice questions:
• Q1: Does the generated image accurately and completely

match the content described in the text prompt?
• Q2: To what extent does executing the proposed plan im-

prove the image’s alignment with the text prompt?
• Q3: Are the instructions in the plan indivisible, meaning

each instruction is a fundamental action that cannot be
further subdivided?



Questions Q1 and Q3 require binary answers, with ’yes’
(1) or ’no’ (0) responses. Q2 offers three response options:
’no improvement’, ’partial improvement’ and ’full align-
ment’. This structured evaluation allows us to assess the
accuracy and granularity of the MLLM planner in relation
to image-prompt alignment.

Our analysis reveals that Qwen-VL-72B as planner has
around 18% more cases of ’no improvement’ compared to
GPT-4o, largely due to generating a considerable number of
empty plans. This suggests that while Qwen-VL-72B may
trail GPT-4o in visual capabilities it often fails to identify
discrepancies, but tends to produce a solid plan when it does
recognize them, as evident from Table 4. We also carry out
the annotation process on a smaller model, Qwen-VL-7B
which in contrast to the above planners performed poorly,
generating approximately 100 empty plans out of 120 im-
ages, indicating significant limitations in both identifying
discrepancies and generating actionable plans.

Error Analysis of Editing Model We qualitatively take
a look at the failure cases of the editing model (PixEdit)
specifically utilizing the above dataset to gather a subset of
plans which are deemed to fully align the image with the
text prompt by the majority of evaluators (based on Q2 ear-
lier). This subset consists of about 46 plans in which any
errors in the final image solely result from the shortcomings
of the image-editing model. We specifically look at images
in which correct, partial or incorrect edits were performed
by the model. Out of these 14 were completely correct, 17
partially correct, and 15 were incorrect. Within the correct
ones, the distribution of correct add, remove and modify
was 12, 0 and 2, respectively. Within the partially correct
ones, the distribution of correct add, remove and modify
was 11, 2 and 4, respectively. Figure 6 provides some rep-
resentative examples. Fixing these issues, possibly through
an RL based mechanism for incorporating feedback is a di-
rection for future work. This also points to the fact that the
primary reason for any errors originates from the editing
model, rather than because of the planner.

Multi-Modal Planner as Evaluation Metric Can plan-
ning help evaluating T2I generative models? For this, we
look at the analysis and mistake identification capabilities
of the planner. Specifically, we post-process the planner-
generated output filtering out only the textual-image ele-
ment comparison and pass this back to the planner which
is provided a zero-shot system prompt. This prompt directs
the planner to generate a score on a 1-100 scale identify-
ing the alignment based on the objects, their relationships
and attributes. When compared with LLMScore [33], We
observed a moderate correlation of 0.423 and 0.404 when
tested using Spearman and Pearson’s test respectively. This
shows the future potential of our MLLM planner to be used

Figure 6. Results illustrating failure cases of Image-Editing model

in conjunction with SoTA evaluation metrics to further im-
prove them.

Number of planning steps In Fig. 5, we see a gradual
increase in the average number of plans as we increase the
prompt complexity from K=1 to K=7 using the Concept-
Mix benchmark. This shows our planner is able to recog-
nize the complexity of the prompt and generate a longer
plan in response. We also see that on average, more capable
T2I models like SD3.5 require fewer editing steps compared
to weaker models such as SD1.5.

Additional qualitative examples of our approach are
shown in Supplementary Section 10.

5. Discussion and Limitations
Summary: In this paper, we have looked at the task of fine-
grained image generation for compositional prompts. Un-
like most exiting methods, which try to achieve this task in
one-go, we take a different route, and decompose the prob-
lem in 3-steps: (a) Generate an initial image based on the
prompts (b) Identify the mistakes and plan out corrective
steps by anaylzing the difference between textual and visual
elements for each object (c) Execute the corrective steps via
an editing model in a sequential manner. The ability of our
model to break the corrective steps into multiple simple ed-
its is key to the success of our approach. Extensive exper-
imentation on multiple datasets shows that our method can
significantly improve the generation quality over 10 differ-
ent models, including SoTA approaches.
Limitations and future work: Limitations of our approach
include its inability to handle certain kinds of complex
prompts, and its dependence on a pre-trained MLLM in the
planning step. Future work includes working with more
complex prompts, integrating our approach with models
which explicitly change the architecture to better align with
text, and incorporating corrective feedback using an RL
based framework and extending to image editing tasks.
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GraPE : A Generate-Plan-Edit Framework for Compositional T2I Synthesis

Supplementary Material

6. Algorithm:
We present the algorithm showcasing the sequence of steps
in GraPE below.

Algorithm 1 Generate-Plan-Edit : GraPE

Require: Text Prompt: T , T2I Model: G, MLLM:P , Edit-
ing Model: E and Few-Shot Examples:

[
E1 · · · Ep

]
#Generate
Ig ← G(T ) ▷ Initial Generated Image

#Plan
{Te1 , Te2 , · · ·Ten , } ← P

(
Ig, T,

[
E1 · · ·Ep

])
#Edit
Ie0 ← Ig
for k = 1, · · · , n-1 do

Iek+1
← E(Iek , Tek+1

) ▷ Intermediate Edited Image
end for
Ieo ← Ien ▷ Final Edited Image

7. Ablations:
We provide the system prompt and an in-context prompting
example in Fig. 9 for the GraPEnaive pipeline used in sec-
tion 4.3. The planner follows the system prompt to gener-
ate reasoning and editing instructions from the given image
and text prompt, without the proposed decomposition into
image and text based elements.

8. Additional and Detailed Results:
Comparison with SOTA LLM-Based Approaches We
compare the performance of GraPE against RPG [57], a re-
cent LLM-based image generation method. RPG leverages
an LLM to decompose complex image generation tasks into
simpler subtasks within localized subregions and employs
complementary-regional-diffusion to coherently merge the
generated subregions into a unified image. The comparison
is conducted on the ConceptMix benchmark, with RPG us-
ing SD-XL [37] as its base model, while GraPE employs the
PixEdit editing model. Results are summarized in Table 5.

Our evaluation reveals that RPG fails to generate valid
plans for over 50% of the samples in the comparison, pri-
marily due to frequent parsing errors. For the remaining
samples, GraPE demonstrates significant improvements in
GPT-QA accuracy over images generated by RPG. Specif-

ically, GraPE achieves gains of 21.5%, 3.0%, 18.0%, and
20.3% for K=1, K=3, K=5, and K=7, respectively.

Table for T2I-Bench and Flickr-Bench Table 10, 11
presents the absolute values of GraPE with PixEdit and AU-
RORA [29] as editing models, for the graphs in Fig. 3.

Results on ConcetpMix Benchmark using GraPE with
AURORA Table 9 presents the numbers on ConceptMix
Dataset using GraPE with AURORA editing model, this ta-
ble complements Table 2, where PixEdit was used as the
editing model.

Performance on Editing Benchmarks We employ two
established benchmarks to evaluate and compare the editing
performance of PixEdit with other models. The first bench-
mark, AURORA-BENCH, consists of image-edit instruc-
tion pairs sourced from eight distinct datasets. This bench-
mark enables the assessment of the discriminative editing
capabilities of models across a wide variety of images. Per-
formance is measured using an automated metric called
DiscEdit [29]. The second benchmark we evaluate is the
MagicBrush Test-set, which comprises 1K editing turns, in-
cluding both single-turn and multi-turn edits. For quantita-
tive analysis on this benchmark, we utilize standard metrics
such as L1, L2, and CLIP/DINO similarity scores, provid-
ing a comprehensive evaluation of the editing performance.
The results in Table 6 indicates strong discriminative capa-
bility in PixEdit compared to baselines. Table 7 shows that
PixEdit is great at single turn edits and follows closely with
baselines in multi-turn edits.

9. Implementation Details:

9.1. Prompts and Few-shot Examples:

Figure 7 and Figure 8 illustrate the full system prompt and
a selection of few-shot examples employed in the MLLM-
based planner for GraPE.

9.2. Hyperparameters

Generation To generate images using various diffusion
models, we adhere to the default hyperparameters specific
to each model, such as the number of inference steps and
the sampling method. All images are generated with a fixed
random seed of 0 to ensure reproducibility.



You are a multi-modal language model with advanced capabilities in both image analysis and natural language understanding. Your task is
to analyse images and identify any mistakes, inconsistencies, or discrepancies when compared to a given textual prompt. Follow these
steps:

Textual Prompt Analysis :
- Thoroughly read and understand the textual prompt.
- Extract key elements, objects, and attributes described in the text.

Image Analysis:
- Examine the image in detail.
- Identify and describe the key elements, objects, and attributes present in the image.

Comparison:
- Compare the elements, objects, and attributes found in the image with those described in the textual prompt.
- Note any discrepancies, such as missing elements, additional elements not described in the text, or any incorrect attributes
(e.g., color, size, position).

Mistake Identification:
- Clearly identify and list any mistakes or discrepancies found.
- Provide a detailed explanation for each identified mistake.

Feedback:
- Offer suggestions for correcting the identified mistakes to ensure the image accurately reflects the textual prompt.
- Keep the feedback minimal and to the point. It should be object centric.

The following rules should also be noted:
- In case there are no mistakes, provide no feedback.
- If there is extreme misalignment between the textual prompt and the image only return <REGENERATE> tag.
- Do Not use phrases like 'in order to match the prompt' and similar ones the feedback
- The feedback must not dictate what will happen after the change. It is not a suggestion but an instruction.
- The feedback instructions must be atomic or single step. Any instruction requiring multiple steps must be divided into two instructions

Figure 7. System-prompt used with GraPE’s MLLM Planner

Method
Concept K=1 Concept K=3 Concept K=5 Concept K=7

Base +GraPEPixEdit Base +GraPEPixEdit Base +GraPEPixEdit Base +GraPEPixEdit

RPG [57] 0.696±0.015 0.845 ±0.008 0.694 ±0.005 0.715 ±0.007 0.583 ±0.002 0.688 ±0.005 0.388 ±0.007 0.467 ±0.005

Table 5. Comparison of RPG [57] and GraPE on ConceptMix

Model WhatsUp Something AG Kubric CLEVR

MagicBrush 0.472 0.371 0.477 0.392 0.400
AURORA 0.565 0.548 0.583 0.592 0.450
PixEdit 0.566 0.613 0.606 0.400 0.600

Table 6. Performance comparison of PixEdit with other models on
AURORA-BENCH using DiscEdit computed as specified in [29].
Note: The baseline scores are taken from [29]

Planning We utilize GPT-4o with a sampling temperature
set to 0, ensuring deterministic outputs for both planning
and Visual Question Answering (VQA) tasks.

Editing For image editing, we use AURORA with 50 in-
ference steps and its default sampler as described in its pa-
per. Additionally, we employ 14 inference steps with DPM-

Solver++ in combination with the PixEdit model to gener-
ate edited images, ensuring reproducibility by using a fixed
random seed of 0.

9.3. PixEdit:

This section details the implementation of PixEdit model.
We chose PixArt-sigma [11] as our backbone T2I model
which we convert into an editing checkpoint. We follow
similar training strategy as used in [6, 29] i.e adding addi-
tional channels in the initial convolution layer of the diffu-
sion model and use the randomly sampled noise concate-
nated with input image as input to de-noise into edited-
image. We started with the SEED-EDIT [20] dataset for
initial pre-training stage. We skip the automatically gener-
ated data and use the 147K sample subset of this dataset that
are either procured from the web or manually created to en-



Textual Prompt: "golden apple, next to bronze, next to
silver grapes "

Assistant:

Analysis and Comparison:

Textual Elements:
- Golden apple
- Bronze orange
- Silver grapes

Image Elements:
- Golden apple (Correct)
- Orange with a bronze stem (Mistake: The entire orange should be bronze, not just
the stem)
- Silver and golden grapes (Mistake: The grapes should only be silver)

Mistake Identification:
- The orange in the image appears to be a regular orange with a bronze stem, rather
than being entirely bronze as
described.
- The grapes in the image are a mix of silver and gold, whereas they should be only
silver according to the prompt.

Feedback:
- Change the orange's color to bronze.
- Change the grapes' color to be entirely silver

Textual Prompt: "Two hot dogs sit on a green paper plate near
a soda cup which are sitting on a white picnic table while a bike
and a silver car are parked nearby"

Assistant:

Analysis and Comparison:

Textual Elements:
- Two hot dogs
- Green paper plate
- Soda cup
- White picnic table
- Bike
- Silver car nearby

Image Elements:
- Two hot dogs (Correct)
- Green tablecloth, not a green paper plate (Mistake: Hot dogs are on a green tablecloth, but
no visible green paper
plate)
- Soda cup (Correct)
- White picnic table (Correct)
- Silver car (Correct)
- No bike is visible (Mistake: A bike is missing)

Mistake Identification:
- The hot dogs are on a green tablecloth, not on a green paper plate.
- There is no bike visible in the image.

Feedback:
- Place the hot dogs on a green paper plate.
- Include a bike in the scene nearby the table and the silver car

Image Image

Figure 8. Selective Few shot examples used in GraPE’s MLLM Planner

Settings Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Single-turn
MagicBrush 0.0788 0.0274 0.8978 0.8313 0.2973
AURORA 0.0754 0.0270 0.9105 0.8594 0.2981

PixEdit 0.0719 0.0278 0.9082 0.8661 0.2946

Multi-Turn
MagicBrush 0.0921 0.0327 0.8777 0.7996 0.3020
AURORA 0.0904 0.0334 0.8887 0.8272 0.3005

PixEdit 0.0892 0.0357 0.8729 0.8068 0.2947

Table 7. Comparison of methods across Single-turn and Multi-turn settings on Magic-Brush Test set. Note: The numbers were reproduced
using the publicly available codebases of the respective baselines with the same random seed.

sure high quality pre-training data. The model is trained for
32K steps with an effective batch size of 256 at this stage.
We further fine-tune this model for 42K steps on the mixture
of editing dataset proposed in [29] to create PixEdit.

9.3.1. Analysis of Improvement in PixEdit

PixEdit introduces two significant advancements over AU-
RORA:
Upgraded Backbone Diffusion Model: Transitioning
from SD1.5 to PixArt-Sigma.
Refined Pre-Training Data: Replacing the Instruct-
Pix2Pix dataset with the real-only subset of the Seed-Edit
dataset for pre-training.
To isolate the impact of change (2), we compare PixEdit

with SD1.5 adapted for editing using the same Seed-Edit
dataset and evaluate their performance on the K = 7 subset
of the ConceptMix benchmark. Results in Table 8 show that
SD1.5 adapted with Seed-Edit data, and subsequently fine-
tuned using the Aurora data-mixture, performs slightly bet-
ter than AURORA alone on average. This highlights the ad-
vantage of incorporating real-world, complex pre-training
data.

PixEdit, leveraging its more powerful PixArt-Sigma
backbone and a compositional text-encoder, achieves the
best performance on average. This underscores the benefits
of combining an advanced diffusion model with improved
text-image alignment for editing tasks.



Given a seed image that captures the fundamental structure of a prompt given to a text-to-image model. 
Generate a set of precise and object centric edit instructions for sequentially modifying the generated seed image. 
Adhere to the following guidelines:

1. Create the edit instructions with clarity , focussing on object-centric details.
2. Avoid generating vague or ambiguous edit instructions.

Refer to the provided samples to guide your response:

INPUT: A woman wearing a white shirt and grey shorts using a shovel to dig in snow.                   IMAGE: 
ASSISTANT: Let's think step by step:
Alright, let's break down your example into a detailed plan following the rules.

Original Prompt:
"A woman wearing a white shirt and gray shorts using a shovel to dig in snow ."

Image Re-Caption:
A woman clad in a rich brown coat and stylish cap is energetically excavating through the pristine snow, 
wielding a sturdy shovel with determination.

Reasoning:
Based on the current image caption the action being performed by the woman matches the input, 
however these are the following errors that this image has :
1. The woman is wearing a coat while the prompt requires her to wear white shirt with grey shorts. 
Therefore we can use the following editing instructions to correct these.

Edits:
1. Make the woman wear shirt and shorts.
2. Color the shirt white.
3. Color the shorts grey.

Figure 9. System-prompt and few-shot example format for GraPEnaive

Method Concept K=7
GraPEAURORA GraPESD1.5∗ GraPEPixEdit

Stable-Diffusion v1.5 [42] 0.598 ±0.003 0.618 ±0.000 0.610 ±0.005

Structure Diffusion [16] 0.612 ±0.003 0.596 ±0.005 0.571 ±0.002

Stable Diffusion v2.1 [42] 0.613 ±0.009 0.588 ±0.003 0.626 ±0.002

LMD [31] 0.625 ±0.005 0.649 ±0.004 0.668 ±0.009

SD-XL [37] 0.624 ±0.010 0.615 ±0.008 0.628 ±0.002

PixArt-α [10] 0.624 ±0.006 0.614 ±0.006 0.625 ±0.002

DeepFloyd IF [2] 0.638 ±0.006 0.672 ±0.007 0.662 ±0.006

PlaygroundV2.5 [30] 0.611 ±0.002 0.722 ±0.004 0.640 ±0.005

Dalle3 [5] 0.718 ±0.006 0.719 ±0.007 0.737 ±0.004

Stable Diffusion v3.5 Large [46] 0.765 ±0.003 0.761 ±0.007 0.784 ±0.005

Table 8. GPT-QA scores using GraPE with different editing models SD1.5∗ vs AURORA vs PixEdit. Note GraPESD1.5∗ represents the
editing model based on SD1.5 trained with refined pre-training data and fine-tuned on Aurora data-mixture.

10. Additional Qualitative Examples:

Errors due to Planner vs Editing Model We try to un-
derstand the broader context, consider a hypothetical set
of 100 plans (randomly sampled from the human study on
MLLM planners). We look at the breakup of these 100
plans and how the planner and editing-model fare on them.
∼ 74.5% of the plans are deemed to have generation errors,

∼ 55.5% (41.3 plans in absolute terms) of which are com-
pletely corrected at the planner level (considering GPT-4o)
indicating a strong alignment between the generated plan
and the text prompt. We then note that about one-third of
these (∼ 30.5% or 12.5 images) are successfully edited to
produce completely correct final images, showcasing the
editing model’s ability to translate plans into precise vi-



sual outputs. The remaining two-thirds of the aligned plans
(∼ 69.5% or 28.8 images) fall short, with errors entirely at-
tributable to the editing model. This underscores that while
the planner demonstrates robust performance in generating
accurate and contextually aligned plans, the editing model
remains the predominant source of errors.

Editing Errors in Perfect Plans The subset of 46 edit
plans showing full improvement as per the majority of hu-
man annotators chosen for qualitative error analysis pre-
dominantly involved plans requiring ”add” actions, with rel-
atively fewer plans focusing on ”remove” or ”modify” ac-
tions. This can also be seen from the breakdown of the cor-
responding final edited images on the basis of mentioned
actions. This distribution reflects the natural bias of gener-
ative models which often fail to identify certain textual el-
ements and the image generated then has errors which can
be fixed by ”add” edit actions.

Plans showing no or partial improvement Finally, con-
sidering the plans which show no/partial improvement we
note that distinct patterns emerge providing further insights
into the limitations of the planner. The plans with no im-
provement are primarily empty plans generated by the plan-
ner, where it fails to propose any actionable edits to address
the misalignment between the text prompt and the image.
On the other hand, the plans with partial improvement typ-
ically exhibit incomplete details, where some, but not all,
elements of the prompt are addressed. A small subset of
these also includes hallucinations, where the planner mis-
takenly assumes the presence of an object in the image that
does not actually exist. These observations highlight areas
where the planner could be enhanced, particularly in terms
of improving its ability to identify actionable edits and re-
ducing cases of over- or under-specification in the generated
plans.



Method
Concept K=1 Concept K=3 Concept K=5 Concept K=7

Base GraPEAURORA Base GraPEAURORA Base GraPEAURORA Base GraPEAURORA

Stable-Diffusion v1.5 [42] 0.808 ±0.009 0.863 ±0.005 0.606 ±0.018 0.717 ±0.024 0.497 ±0.010 0.688 ±0.010 0.450 ±0.005 0.598 ±0.003

Structure Diffusion [16] 0.823 ±0.002 0.895 ±0.004 0.606 ±0.002 0.734 ±0.021 0.542 ±0.014 0.698 ±0.015 0.447 ±0.001 0.612 ±0.003

Stable Diffusion v2.1 [42] 0.833 ±0.002 0.875 ±0.014 0.639 ±0.014 0.719 ±0.012 0.579 ±0.012 0.694 ±0.009 0.466 ±0.002 0.613 ±0.009

LMD [31] 0.855 ±0.004 0.907 ±0.008 0.711 ±0.008 0.765 ±0.005 0.643 ±0.011 0.721 ±0.012 0.591 ±0.002 0.625 ±0.005

SD-XL [37] 0.848 ±0.010 0.893 ±0.006 0.708 ±0.018 0.740 ±0.013 0.635 ±0.014 0.692 ±0.018 0.520 ±0.003 0.624 ±0.010

PixArt-α [10] 0.813 ±0.010 0.883 ±0.008 0.668 ±0.011 0.717 ±0.012 0.649 ±0.011 0.711 ±0.022 0.507 ±0.001 0.624 ±0.006

DeepFloyd IF [2] 0.883 ±0.009 0.898 ±0.005 0.680 ±0.016 0.735 ±0.016 0.663 ±0.014 0.713 ±0.007 0.583 ±0.002 0.638 ±0.006

PlaygroundV2.5 [30] 0.908 ±0.010 0.945 ±0.004 0.737 ±0.023 0.783 ±0.012 0.658 ±0.015 0.709 ±0.006 0.540 ±0.003 0.611 ±0.002

Dalle3 [5] 0.947 ±0.002 0.950 ±0.004 0.832 ±0.012 0.809 ±0.007 0.812 ±0.014 0.783 ±0.015 0.728 ±0.006 0.718 ±0.006

Stable Diffusion v3.5 Large [46] 0.927 ±0.005 0.927 ±0.002 0.815 ±0.002 0.812 ±0.004 0.803 ±0.003 0.792 ±0.002 0.759 ±0.004 0.765 ±0.003

Table 9. Results on Concept-mix benchmark - GraPEAURORA

Method
Base GraPEAURORA GraPEPixEdit

DSG (w/o dep) DSG DSG (w/o dep) DSG DSG (w/o dep) DSG

Stable-Diffusion v1.5 [42] 0.679 ±0.006 0.654 ±0.007 0.758 ±0.008 0.746 ±0.009 0.788 ±0.006 0.769 ±0.006

Structure Diffusion [16] 0.714 ±0.004 0.697 ±0.004 0.760 ±0.017 0.741 ±0.014 0.794 ±0.006 0.777 ±0.008

Stable Diffusion v2.1 [42] 0.701 ±0.001 0.688 ±0.000 0.757 ±0.012 0.742 ±0.014 0.787 ±0.002 0.772 ±0.004

LMD [31] 0.782 ±0.001 0.777 ±0.002 0.805 ±0.005 0.790 ±0.006 0.836 ±0.008 0.826 ±0.008

SD-XL [37] 0.805 ±0.002 0.795 ±0.001 0.844 ±0.004 0.829 ±0.005 0.839 ±0.003 0.828 ±0.002

PixArt-α [10] 0.710 ±0.004 0.699 ±0.006 0.758 ±0.006 0.744 ±0.009 0.796 ±0.006 0.788 ±0.006

DeepFloyd IF [2] 0.822 ±0.002 0.811 ±0.004 0.840 ±0.008 0.819 ±0.011 0.852 ±0.001 0.840 ±0.001

PlaygroundV2.5 [30] 0.788 ±0.002 0.775 ±0.004 0.821 ±0.011 0.801 ±0.011 0.825 ±0.006 0.808 ±0.006

Dalle3 [5] 0.932 ±0.003 0.924 ±0.003 0.913 ±0.014 0.910 ±0.015 0.934 ±0.003 0.928 ±0.002

Stable Diffusion v3.5 Large [46] 0.871 ±0.003 0.864 ±0.004 0.876 ±0.006 0.866 ±0.007 0.888 ±0.003 0.880 ±0.003

Table 10. GPT-QA scores on T2I Comp-Bench, GraPEX refers to using GraPE with X editing model

Method
Base GraPEAURORA GraPEPixEdit

DSG (w/o dep) DSG DSG (w/o dep) DSG DSG (w/o dep) DSG

Stable-Diffusion v1.5 [42] 0.703 ±0.004 0.640 ±0.005 0.800 ±0.016 0.748 ±0.017 0.787 ±0.005 0.742 ±0.006

Structure Diffusion [16] 0.725 ±0.012 0.648 ±0.014 0.816 ±0.003 0.766 ±0.002 0.802 ±0.005 0.732 ±0.006

Stable Diffusion v2.1 [42] 0.720 ±0.009 0.656 ±0.007 0.800 ±0.010 0.740 ±0.010 0.821 ±0.001 0.757 ±0.001

LMD [31] 0.682 ±0.006 0.640 ±0.012 0.752 ±0.008 0.697 ±0.008 0.744 ±0.002 0.697 ±0.004

SD-XL [37] 0.695 ±0.004 0.613 ±0.003 0.775 ±0.010 0.720 ±0.011 0.818 ±0.005 0.758 ±0.007

PixArt-α [10] 0.735 ±0.006 0.663 ±0.005 0.792 ±0.005 0.733 ±0.005 0.811 ±0.011 0.767 ±0.011

DeepFloyd IF [2] 0.831 ±0.003 0.792 ±0.003 0.842 ±0.006 0.803 ±0.007 0.877 ±0.003 0.843 ±0.005

PlaygroundV2.5 [30] 0.789 ±0.005 0.735 ±0.007 0.806 ±0.010 0.759 ±0.012 0.833 ±0.005 0.789 ±0.004

Dalle3 [5] 0.891 ±0.004 0.857 ±0.005 0.890 ±0.002 0.847 ±0.001 0.904 ±0.004 0.873 ±0.007

Stable Diffusion v3.5 Large [46] 0.881 ±0.004 0.852 ±0.004 0.905 ±0.002 0.873 ±0.004 0.909 ±0.003 0.884 ±0.003

Table 11. GPT-QA scores on Flick-Bench, GraPEX refers to using GraPE with X editing model



Figure 10. Results illustrating failure cases of generated Edit Plans



Figure 11. More results illustrating failure cases of Editing Models
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